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Abstract

The increasing demand for energy, coupled with the growing concerns over environmental
sustainability, has led to a significant shift in the global energy landscape. As renewable energy
sources, such as solar and wind, gain prominence, the variability and intermittency of these
sources pose challenges to grid stability. In addition, demand trends reveal large difference in
power required during the evening compared to the day, which further exacerbates the grid
stability. To address these issues and optimize energy utilization, the integration of energy
storage systems in residential settings has emerged as a promising solution. Residential energy
storage systems (RESS) enable homeowners to store excess energy during periods of low demand
and release it during peak hours or when renewable energy generation is low. By effectively
managing the energy flow within these systems, homeowners can reduce their reliance on the
grid during peak hours, optimize their energy consumption, and potentially save costs.

1 Introduction

One crucial factor in residential energy storage management is the price fluctuations of electric-
ity. In many electricity markets, electricity costs vary throughout the day due to factors such as
demand patterns, generation capacity, unforeseen circumstances, and market conditions. These
price fluctuations provide an opportunity for homeowners to strategically schedule the charging
and discharging of their energy storage systems to maximize cost savings. Optimal control strate-
gies that consider price fluctuations can significantly enhance residential energy storage’s economic
viability and efficiency. This project aims to explore and develop an optimal control framework
for residential energy storage systems under price fluctuations, with the objective of minimizing
electricity costs and variability of grid demand. By investigating different hyperparameters of an
optimal control algorithm and evaluating its performance, this study seeks to contribute to the
development of more intelligent and economically viable residential energy storage strategies.

2 Related Work

The pressing importance of the grid optimization problem has led to the exploration of various
optimization techniques and algorithms, of which Model Predictive Control (MPC) emerges as
one of the most promising approaches. MPC [1] utilizes a mathematical model of the energy
storage system, along with forecasts of electricity prices and household energy demand, to formulate
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an optimization problem. The MPC algorithm generates a sequence of control actions over a
specific prediction horizon by considering constraints such as the state of charge (SoC) limits,
maximum charging/discharging rates, and grid connection limits. The optimization problem is
solved iteratively, updating the control actions at each time step after running an open-loop control
problem for a finite horizon.

Optimized strategies for power usage allow homeowners to leverage price fluctuations and dynami-
cally adjust the charging and discharging profiles of the energy storage system, aiming to minimize
electricity costs without compromising energy availability and, at the same time, reduce the vari-
ance in power drawn from the grid, thus enhancing grid stability. Alternatively, the residential
energy storage problem has also been addressed through Dynamic Programming (DP) [2], which
involves decomposing the original optimization problem into smaller sub-problems and solving them
recursively. The optimal solutions for the sub-problems are combined to obtain a solution for the
original optimization problem. In finite-horizon problems with or without stochasticity, DP-based
techniques are known to be effective.

Besides the optimal control techniques, learning-based control techniques have proven to be very
effective as well. Online feedback optimization [3] is one such technique implemented to use mea-
surements from the grid as feedback to iteratively change the control inputs until they converge to
the solution of the optimization problem. This method is computationally light, robust to model
mismatch, can utilize a grid to its full capacity, and needs very limited model information. The
newly realized power of machine learning and artificial intelligence, coupled with the abundance
of data in the digital age, has unlocked new avenues for the optimal control of residential energy
storage systems. Reinforcement Learning (RL) algorithms [4], such as deep Q-learning and pol-
icy gradient methods, are shown to learn optimal control policies through interactions with the
environment without requiring an explicit mathematical model. These algorithms can adapt to
changing electricity price patterns and household energy demand profiles, continuously improving
the control strategies.

3 Problem Statement

In this work, we consider n households, each anchored to a rechargeable battery and a home solar
electric system and connected to a grid. Given demand patterns for each home along with the
trend of generated power from the solar electric system, we aim to find an optimal charge-discharge
policy for the batteries which minimizes the total cost of electric power drawn from the grid and
at the same time minimizes the large power load on the grid supply during peak hours.

We evaluate grid operation and the cost minimization problem over a week, with an hourly dis-
cretization in time, with the start of the hour indicated by tk, k = 0, . . . , N . All power supplies and
demands are assumed constant over any given time step ∆t = 1 hour. For ith household during
the time tk−1 to tk, the power demand Di

k is fulfilled using supplies from the grid Xi
k, the solar

electric system Si
k and the battery Y i

k . It is important to note that while supplies from the grid
and solar electric system are unidirectional, power can flow into the battery to charge it, i.e., Y i

k

can be negative, as shown in fig. 1. A power sink Zi
k is added to account for any residual left after

fulfilling the household demand and charging the battery and is needed to ensure the safety of the
system, for instance, in the case when the battery is fully charged, and power generated by the
solar electric system is higher than the demand. The resulting constraints can then be described
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Figure 1: Graphical representation of the model

as, ∀i = 1, . . . , n and ∀k = 1, . . . , N , we require that

Di
k = Xi

k + Si
k + Y i

k − Zi
k, (1)

Xi
k ≥ 0, Si

k ≥ 0, Zi
k ≥ 0. (2)

The battery capacity and energy (or buffer) level at the start of kth hour, for ith household, is in-
dicated by B̄i and Bi

k, respectively. Each battery is characterized by buffer limits Bi
min and Bi

max,
maximum charge/discharge rate Ȳ i, and charging and discharging efficiency ηc and ηd, respec-
tively. The inclusion of charging and discharging efficiency in the model highlights the inefficiencies
involved and establishes correspondence with available technology, while limits on buffer levels
and maximum charge/discharge rate ensure the longevity of the RESS. Following this, we get the
battery energy level evolution equation along with the associated constraints ∀i = 1, . . . , n and
∀k = 1, . . . , N as

Bi
k = Bi

k−1 − f(Y i
k ), f(Y ) = max{ηcY, Y/ηd}, (3)

Bi
min ≤ Bi

k ≤ Bi
max, (4)

−Ȳ i ≤ Y i
k ≤ Ȳ i. (5)

We look at minimizing the total cost and the peak load on the grid to ensure grid stability. With
total power drawn from the grid between time tk−1 and tk described by Qk = Σn

i=1X
i
k and given unit

price of power pk over the time step, aggregated in vectors Q = [Q1, . . . , QN ] and p = [p1, . . . , pN ],
total power cost is given by p⊤Q. Consequently, the objective function for the optimization problem
can then be expressed as

minimize α1|Q|∞ + α2p
⊤Q, (6)
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where α1 and α2 are the weighing factors for objectives corresponding to peak demand and total
cost, respectively.

Qualitatively, the battery is expected to draw power from the grid during low-demand periods and
consequently use the stored energy during the peak demand hours when the per-unit cost is high.
Since a fraction of the power demand during the peak hour is supplied by the battery, this will
also have a balancing effect on the grid. In other words, it will minimize the difference between the
power supplied by the grid during peak and nadir demand hours.

4 Method

The hourly electricity prices for a week, required as input for the problem, are obtained using the
normalized prices identified using [5] and the average electricity price in the United States. We
assume that the normalized demand follows a similar trend by following a supply-demand relation,
i.e., the per-unit price goes up because demand increases. This, along with the average American
home consumption of 30 kWh, as reported by the Energy Information Administration, is used to
obtain the total hourly base demand input for a week. It is important to note that the demand
patterns during the weekend are significantly different from those during the week, as shown in
fig. 2. Hourly input data corresponding to normalized solar power generated during a week is
obtained from a report published by the California ISO 1. To account for the inherent variability
associated with demand and generated solar power, corresponding inputs for each household are
corrupted with independent random Gaussian noise.

Figure 2: Demand, D(t) and electricity price, p(t) data for a week with a similar trend depicting
positive correlation and different trends between weekdays and weekends

The optimization problem with objective function given by (6) subjected to constraints described
by (1)-(5) is convex. However, the constraint describing the evolution of battery energy levels,
given by (3), is difficult to handle under the modeling restrictions associated with any optimiza-
tion algorithm. Considering this, we use Model Predictive Control (MPC), in addition to convex

1What the duck curve tells us about managing a green grid, California ISO
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Figure 3: Demand, solar power, and optimal battery power for two weekdays (left column) and
weekends (right column) for two different homes

programming, to obtain an optimal energy storage policy.

The nonlinearity in (3) is isolated in f(Y ), which admits a bi-linear form. We aim at finding a
linear approximation f̂(Y ) for f(Y ), which ensures that buffer and charge/discharge rate limits of
the battery described by (4) and (5) are not violated. This is important numerically to guarantee
the feasibility of the optimization problem and practically, to ensure the safety and longevity of the
battery. Using knowledge of the model and battery dynamics, it is identified that 0 ≤ f̂(Y ) ≤ f(Y )
for Y ≥ 0 and 0 ≥ f̂(Y ) ≥ f(Y ) for Y < 0 to ensure battery energy level and charge/discharge
rate constraints. Consequently, approximation f̂(Y ) is given by

f̂(Y ) = aY, a = min{ηc, 1/ηd}. (7)

Replacing f(Y ) by f̂(Y ) in (3) results in a straightforward convex problem with convex objective
function and affine constraints, which is solved using CVXPY[6][7]. Under the MPC framework,
true battery energy levels after one time step are estimated according to (3) using known initial
energy level and the optimal values of the power flowing from the battery for the first step Y opt

0

obtained from the convex program.

5 Experiments

The results discussed below are generated using n = 5 households. Varying sizes of the houses
connected to the grid are accounted for by randomly choosing (with replacement) n number of
battery capacities B̄i from a list of standard battery capacities (100kWh, 300kWh, and 500kWh).
Battery properties are assigned based on battery capacity as Bi

min = 0.2B̄i, Bi
max = 0.8B̄i, and

Ȳ i = 0.3B̄i/∆t. Power demand and solar power generated are also scaled in proportion to the

5



battery capacities. We synthesize the results for a week using an equally weighted objective function,
i.e., α1 = α2 = 1, and MPC with time horizon NMPC = 24 hours.

The power supplied from the battery according to the optimal policy under the aforementioned
conditions, as the demand pattern unfolds, is shown in fig. 3. As we can see, the battery is charged
and discharged to offset the power required from the grid during peak hours. Initially, the battery
is discharged to provide for the demand when solar power is unavailable. In the afternoon, as the
solar power becomes accessible and is in excess of the required demand, the battery is charged, as
can be observed clearly for House #3 during the weekend (right column) between hours 125 and
135. It is important to note that the battery is being charged during peak demand periods, but
this energy is coming from the solar panels, and not the grid, and hence is effectively saving cost.
Through the peak demand period in the evening, the battery is discharged to accommodate the
high power requirements.

Changes in the energy levels of the battery as the power is drawn from or supplied to the battery
is shown in fig. 4. Horizontal dashed lines show energy level limits and charge/discharge rate
limits. The battery energy levels often hit upper and lower limits, indicating that the battery is
being effectively used, and energy level transitions and charge/discharge rate show that the battery
dynamics and charge/discharge rate constraints are respected.

Figure 4: Optimal battery energy level and optimal battery power for two weekdays (left column)
and weekend (right column) for two different homes with buffer limits and battery charge/discharge
rate limits

We investigate the differences in results from the optimal policies focusing on minimizing the power
cost with those more concerned with grid stability by varying weights α1 and α2 in the objective
function. Three policies, namely cost-focused policy (α1 = 0, α2 = 1), grid-focused policy (α1 = 1,
α2 = 0), and equally weighted policy (α1 = 1, α2 = 1), are evaluated and total grid supply under
different policies are reported in fig. 5. Under the cost-focused policy, peak grid supply is much
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higher compared to the other two policies. On the other hand, under the grid-focused policy, the
maximum power drawn from the grid is much lower, but significantly more power is drawn during
low-demand hours. Equally weighted policy embodies the best of the two extreme policies, i.e., the
peak load is curtailed while lowering the price.

Changes in policy under a higher number of households n and longer time frame N were also
inspected. It was observed that the optimal policy is invariant to changes in these parameters.
The independence of the policy under n and N can be argued under the assumption that the grid
is an infinite source of power and total time doesn’t affect optimal output coming from MPC,
looking at only NMPC steps ahead, respectively. With respect to the MPC time horizon NMPC,
the optimal control policy is more responsive, with finer fluctuations, with larger NMPC since the
optimization problem looks further into the future and has access to more information. However,
this incremental accuracy comes at the cost of significantly higher computational effort.

Figure 5: Total grid supply under the cost-focused, grid-focused, and equally weighted policy.

6 Conclusions and Future Work

In summary, this study aims to enhance previous research conducted on the problem of residential
energy storage, presented in [8]. This work considers an electric power grid connected to multiple
houses equipped with solar electric systems and rechargeable batteries and focuses on optimizing the
charge-discharge policy of rechargeable batteries under uncertainties and variability in the demand
and solar power generated. The discretized problem is solved using Model Predictive Control
(MPC) in conjunction with convex programming. A linear approximation of the battery dynamics
is utilized to ensure feasibility and safety constraints. It is important to note that sequential convex
programming is ineffective since the power flowing from the battery is not continuous and changes
from one step to the next, although bounded, can be large.

Experimental results demonstrate the effectiveness of the optimized battery power policy in offset-
ting power from the grid during peak hours. The battery is charged during low-demand periods
when solar power is abundant and discharged during peak-demand periods. The battery energy
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levels adhere to their limits, and the charge/discharge rates remain within the specified bounds.
Different weighting factors in the objective function are explored, highlighting the trade-off between
minimizing power cost and ensuring grid stability. The study also examines the impact of varying
the number of households and the time frame on the optimal policies. It is observed that the poli-
cies remain consistent irrespective of these factors. Additionally, the stability and responsiveness
of the optimal control policy are discussed concerning the MPC time horizon, with longer horizons
providing more accurate predictions but requiring higher computational effort.

Future efforts can be directed towards incorporating on-the-fly uncertainties overlaid on top of
a smoothly varying demand and solar power supply. Also, extracting a more regularized and
implementable but efficient charging/discharging policy from the obtained optimal policy can be
of great interest.

7 Video Presentation link and approval

The link to the video presentation: here

We approve of sharing this report with future students.
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