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Abstract

Inverse problems are ubiquitous in engineering applications and often are ill-
conditioned i.e. they frequently have one-to-many mapping. The deterministic
optimization-based techniques for solving inverse problems result in a single
estimate that often corresponds to a suboptimal local minima. These problems are
better suited to a probabilistic interpretation under which a probability distribution
over the solution space effectively captures the many-to-one relations. Denoising
Diffusion Probabilistic Models (DDPMs) have emerged as a powerful technique
to learns high-dimensional probability distribution from data. Sampling from
conditional DDPM involves starting with a pure noise sample and iteratively
leveraging a denoising process to reconstruct samples from the conditional data
distribution that aligns with the provided condition. The iterative nature of the
denoising process behaves similarly to the iterative optimization techniques, and
additionally facilitates the learning of a prior over the solution space. This provides
a principled way to sample multiple solutions of an ill-conditioned inverse problem.
In addition, classifier-free guidance provides a novel way to control the alignment
between the generated sample and the input condition. In this project, we explore
the use of conditional DDPMs to learn optimizers for solving such ill-conditioned
inverse problems. We show encouraging results on a challenging problem of
estimating 3D human pose from input 2D keypoints. Additionally, we introduce a
novel transformer-based design that significantly enhances the capacity of DDPMs
compared to conventional MLPs for this inverse problem. Our implementation can
be found at here as well as here.

1 Introduction

Inverse problems play a crucial role in bridging the gap between mathematical models and observa-
tional data, with numerous applications in engineering sciences such as medical imaging, remote
sensing, and signal processing. The primary objective of inverse problems is to determine the input(s)
that result in a given output when passed through a forward operator, which maps inputs to outputs.
However, for high-dimensional problems, the inverted mapping from outputs to inputs often ex-
hibits a one-to-many behavior, making it challenging to address using traditional optimization-based
techniques[8] that typically identify only a single input for any given output. Moreover, if the forward
model is complex, the optimization process can become trapped in a local minima, leading to a
suboptimal solution. Additionally, the forward model is often computationally expensive, making it
impractical to carry out the optimization process repeatedly to identify the set of all possible inputs.

Alternatively, the ill-conditioning of inverse problems can be addressed by adopting a probabilistic
interpretation of the problem. The goal is to learn a distribution over the input space conditioned on
the output value, where the support of the conditional distribution is ideally restricted to the points
that lie in the solution set of the inverse problem. However, this requires access to the probability
distribution over inputs and outputs, which is very high-dimensional and intractable with classical
tools.
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Deep generative models, such as GANs, VAEs, and auto-regressive models[11, 7, 2], have shown
great promise in learning high-dimensional (conditional) probability distributions using an offline
dataset. These learned distributions can later be effectively used for sampling from the conditional
distribution of inputs given some output. This is also desirable since, under an expensive and complex
forward model, the learned distribution can act as a guide for learning an optimizer that can exploit
the prior over the forward model and the data.

Recently, Denoising Diffusion Probabilistic Models (DDPMs)[18, 9] have demonstrated remarkable
success in modeling complex data distributions with exceptionally high sample quality. These models
are particularly promising for our problem because they offer a natural means of controlling the
alignment between generated samples and provided conditions through classifier-free guidance[10],
unlike other generative models. Specifically, the weight parameter associated with the classifier-free
guidance enables us to regulate the degree to which generated samples conform to the given condition.
This feature is especially useful in scenarios where the observation is noisy(or accurate), as it allows
the generated samples to rely more(or less) on the unconditional prior.

We evaluate our hypothesis and present findings on the challenging task of predicting 3D human
pose[25] from input 2D keypoints. Estimating 3D human pose (represented by the 3D angles of body
joints) from 2D keypoints detected from an image is a classical vision problem of great significance,
and it is appropriate for our case since the inverse mapping from 2D keypoints to 3D pose is a
complex one-to-many mapping prone to poor local minima. We demonstrate that an optimizer based
on DDPM can learn this mapping using a 3D motion capture dataset. Furthermore, we show that
we can regulate the degree of ‘fit’ between the generated 3D pose and input 2D keypoints using
classifier-free guidance. We also show that expressing the body pose as a high-dimensional vector of
combined joint rotations makes it challenging to regularize the model since it is prone to learning
spurious correlations from the dataset. To tackle this problem, we introduce a novel transformer-
based[20] architecture that significantly improves the modeling capabilities of the DDPM while
utilizing substantially fewer model parameters.

2 Related Work

Several prior works have studied such problems from various viewpoints. The limitations of standard
gradient-based optimizers like Adam, RMSProp, AdaDelta, etc., which are designed to work in a
problem-agnostic way, are studied in [1, 3, 21, 16, 5]. These studies suggest training an optimizer
model to enhance update steps tailored for a particular set of optimization problems. Several research
efforts have framed this objective as an inverse problem, wherein the model tries to anticipate the
true input signal from a corrupted observation [24] under an assumed prior over the true signal.
However, these optimization methods only output one sample from the distribution of possible
solutions. Precious studies, such as [13], have employed normalizing flows to generate distributions
for inverse problems. Given the improved generative modeling capabilities shown by DDPMs, it
is natural to investigate the application of DDPMs in similar contexts. It is worth noting that all
conditional generative models (such as conditional VAE, conditional GAN, etc.) could potentially
serve as solutions for this problem. However, our specific focus is on conditional DDPMs[9] as
they have shown superior modeling power with their iterative generation process, and classifier-free
guidance[10] provides an intuitive way to control the effect of conditioning over generated samples.

Some earlier studies have looked into similar directions. An optimization technique based on
diffusion models was presented in [6]. This method enforces physics constraints on DDPMs by
aligning the trajectory of the DDPM with that of a physics-based model, and serves as a motivation to
undertake this challenge. However, like other optimization-based methods, it result in a single optimal
estimate and fails to capture the one-to-many relationship of the inverse mapping. Additionally,
the effectiveness of the proposed method is constrained by the ability to obtain the physics-based
optimization trajectory, as noted by the authors.

Diffusion Optimization Models (DDOM) are introduced in [12] to address the ill-conditioning of
the inverse problems. The DDOM learns to reproduce the level sets of a function, demonstrating its
ability to address ill-posed inverse problems. Another method termed Bayesian Algorithm Execution
(BAX) introduced in [17] can be used to identify level sets under a function evaluation budget given
an algorithm to compute the level sets, which in our case can potentially be obtained through DDOM.
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However, DDOM focused on black-box optimization and showed results on simpler inverse problems.
Our focus for this project is to explore DDPMs for complex inverse problems like 3D pose estimation.

3 Method

3.1 Problem Setup

Given a sophisticated forward model f : Rm → Rn and y ∈ Rn, the goal of the inverse problem is
to find the level set X = {x ∈ Rm|f(x) = y}, or equivalently to learn a mapping g = f−1 such that
X = g(y) = f−1(y). Classical optimization-based techniques find the solution of

min
x

objective(y, x, f)

where objective(y, x, f) is usually ∥y − f(x)∥22 with an optional prior over x. The optimization is
often an iterative gradient-based method which is initialized with a random x0 and finds one solution
after convergence. When f is a many-to-one mapping, different initializations can find different
solutions, however carrying out multiple optimizations till convergence through a complex forward
model is expensive. More importantly, there is no principled way to control the distribution p(x|y)
produced by the optimization for a given initialization distribution p(x0). For high-dimensional
problems, learning a prior over x (to guide the optimization) itself is a hard problem.

On the other hand, conditional generative models based on GAN, VAE, score-based models, etc. have
shown great results in modeling pθ(x|y) with parameters θ from a dataset of {xi, yi}. Following
this, the inverse problem of finding X can be reformulated as finding the support of the conditional
distribution p(x|y) which can be learned from the dataset of {xi, yi} where yi = f(xi). The values
of p(x|y) signify the probabilities of different values of x ∈ X = g(y) and could potentially inform
the uncertainties associated with processes that subsequently use the identified inputs.

3.2 Score-based Generative Models

Score-based generative models[19] represent p(x) as the score function sθ(x) ≈ ∇ logx p(x).
Stochastic gradient Langevin dynamics[23] can be used to produce samples from p(x) using
∇x log p(x) using an iterative markovian process shown below.

xi = xi−1 +
δ

2
∇x log p(xi−1) +

√
δϵi, where ϵi ∼ N (0, I)

3.3 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models(DDPMs)[9] are a class of score-based generative models
inspired by non-equilibrium thermodynamics. Given a datapoint from a distribution x0 ∼ p(x), the
forward diffusion process (not to be confused with our forward model f ) adds increasing amounts of
Gaussian noise to produce a sequence of noisy samples (x1, ..., xT ) where xT is almost equivalent to
pure noise (isotropic Gaussian distribution).

p(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

p(x1:T |x0) =

T∏
t=1

p(xt|xt−1)

where βt’s are dependent on the noise schedule.

Under reasonable assumptions, the forward diffusion process is reversible and the reverse diffusion
process p(xt−1|xt) can be used to generate samples of p(x) starting from xT ∼ N (0, I). Each
step of the reverse diffusion process can be learned by a model pθt(xt−1|xt) using any generative
modeling approach. If it is modeled using the score function sθt(xt), [22] showed that learning this
model is equivalent to learning a denoising function ϵθt(xt) which predicts the noise ϵt added during
the forward diffusion. [9] proposed DDPM as a single model ϵθ(xt, t) can learn this whole reverse
process using a simple denoising objective.

L = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
Refer to the original DDPM paper[9] for more details.

3



3.4 Conditional DDPMs

[4] showed that the conditional generation using DDPM can be done by using the gradient of the
condition ∇x log p(y|xt) to guide the denoising. In particular, using the Bayes rule,

∇xt
log p(xt, y) = ∇xt

log p(xt) +∇xt
log p(y|xt)

−λtϵ̄θ(xt, t) ≈ −λtϵθ(xt, t) + w∇xt log fϕ(y|xt)

where −λt is appropriate scaling between score objective and denoising objective. ϵ̄ is a new
classifier-guided predictor. The weight parameter w controls the extent of condition guidance during
sampling. Setting w = 0 will recover unconditional generative model.

Note that log p(xt) is unconditional generative model discussed above. ∇xt log p(y|xt) nudges the
updates to align more with the condition y. [4] showed conditional generation on MNIST by using a
pretrained classifier cϕ(y|xt, t) as a proxy for p(y|xt). However, note that p(y|x) in our case is simply
the forward model y = f(x). This means that if our forward model f is accessible and differentiable,
then we can train an unconditional DDPM on x and then use the gradient of the forward model to
guide the sampling towards the provided condition y. Although this formulation works for MNIST
conditional generation where the condition is a discrete class label, it is not straightforward to define
∇xt

log p(y|xt) when f is a many-to-one continuous mapping. For many-to-one mapping f , p(y|x)
is non-zero only when y = f(x). In this case, ∇xt

log p(y|xt) fails to provide meaningful guidance
to align the samples with the condition y.

3.5 Classifier-free guidance

[10] showed that it is possible to do conditional generation without classifier guidance. Using Bayes
rule,

∇xt log p(y|xt) = ∇xt log p(xt|y)−∇xt log p(xt)

= −λt

(
ϵθ(xt, t, y)− ϵθ(xt, t)

)
Here, ϵθ(xt, t, y) is a predictor trained with condition input and ϵθ(xt, t) is unconditional predictor.
Following the classifier-guided formulation above, the new classifier would be

−λtϵ̄θ(xt, t, y) = −λtϵθ(xt, t, y) + w∇xt log p(y|xt)

ϵ̄θ(xt, t, y) = (w + 1)ϵθ(xt, t, y)− wϵθ(xt, t)

This formulation doesn’t contain any dependency on the classifier. It requires conditional predictor
ϵθ(xt, t, y) and an unconditional predictor ϵθ(xt, t). In practice, unconditional predictor is trained
along with ϵθ(xt, t, y) by providing null conditioning y = ∅. Intuitively, each update is pushed
towards the conditional prediction aligning with y and away from unconditional prediction aligning
with any random y. This classifier-free formulation allows us to use it for our learned optimizer
of inverse problem. The value of w controls the extent to which our solution x aligns with y.
This provides a novel way to dynamically control the optimization based on our confidence in the
observation y. Throughout our experiments, we use this conditional DDPM with classifier-free
guidance to learn the optimizer for inverse problem.

4 Toy Experiments

The initial experiments with conditional DDPMs were carried out on the MNIST dataset a tuto-
rial from (https://github.com/TeaPearce/Conditional_Diffusion_MNIST/tree/main). The trade-off
between sample diversity and conditioning was studied by varying the mixing parameter and we
were able to reproduce the baseline results. The samples generated from the conditional DDPM
corresponding to different conditioning are shown in Fig. 1.

Next, as a toy example of a continuous forward model y = f(x), we studied the negative of standard
2D Branin function in domain x1 ∈ [−5, 10] and x2 ∈ [0, 15] following [12].

f(x1, x2) = −a(x2 − bx2
1 + cx1 − r)2 − s(1− t) cos(x1)− s, (1)

with a = 1, b = 5.1
4π2 , c = 5

π , r = 6, s = 10, and t = 1
8π . As shown in Fig. 2, it has three global

minimas (maximas in the original Branin function) with convoluted contour lines and is a good test
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Figure 1: MNIST samples from conditional DDPMs corresponding to different conditioning strengths.

Figure 2: Negative 2D Branin Function.

case to study the inverse problem. We were able to train a simple MLP based model to generate
samples x ∈ R2 for a given y ∈ R. Note that the conditional distribution p(x|y) is represented by the
contour line in Fig. 2. After verifying our implementation with these toy examples, we explored our
hypothesis with a much more challenging problem of 3D human pose estimation.

5 3D Human Pose Estimation

Figure 3: SMPL 3D body
model we use for our 3D pose
estimation problem.

To test our method on a real-world application, we use standard
2D-to-3D pose estimation setting. SMPL [14] body model is a
standard 3D body model in pose estimation literature as shown in
Fig. 3. Given body pose x ∈ R24×3 denoting the 3D rotations of
24 body joints, it transforms a template 3D body mesh in that pose
and computes 3D locations of 25 keypoints. 3D keypoints can be
projected onto an image plane using camera parameters c to get 2D
keypoints y ∈ R25×2. For this project, we fix camera parameters
c and define x-to-y mapping as a forward model y = f(x). The
optimization problem is to find the set of reasonable body poses x
from input 2D keypoints y as a conditional distribution p(x|y).
Note that this is a complex function involving forward kinematics
and perspective camera project - both of which reduces the degrees
of expressiveness. Multiple 3D poses x can map to the same 2D
keypoints y. For example, one particular pose x1 is shown with
corresponding 2D keypoints y in Fig. 3. It is easy to see that there
exists another pose x2 where the right leg leans backward of the body
plane (instead of forward as shown in the figure) which will give
the same 2D keypoints. However such x2 is not practical despite
aligning perfectly with y. The right shoulder of the body can rotate
along the straight right hand axis while still maintaining the same set of 2D keypoints. A classical
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optimization technique to find x for a given y will easily get trapped into a local minima. Thus, a
probabilistic learned optimization based on conditional DDPM is suitable for this task.

5.1 Dataset & Metric

We use AMASS dataset[15] which is a large motion capture database containing diverse motions
(body pose sequence) on the SMPL body model. It combines multiple other motion capture datasets
under the same SMPL representation and contains more than 11K motions and 4M frames. We
train our models on the frames of train sequences and report our metrics on the frames of validation
sequences. Each joint rotation xj ∈ R3 is converted into an equivalent 6D representation following
[26]. For evaluation, we use the mean absolute difference between the input 2D keypoints y and the
projected 2D keypoints f(x) of the generated poses x, normalized by the image size. We also show
qualitative results of the generated poses.

5.2 Architecture

Since x and y can be represented as vectors, our DDPM ϵ(xt, y, t) can be implemented as a simple
MLP model. This may work on simpler problems but we show that it leads to suboptimal results
on 3D pose estimation for two main reasons: (1) Forward mapping x-to-y is very skewed. Rotation
of torso joint affects all keypoints of the upper body whereas the rotation of palm only affects the
palm joint. (2) Concatenating rotations of all joints in a single vector suffers from the curse of
dimensionality. Any model on such representation is prone to learning spurious correlations from the
dataset and hence requires careful tuning of heavy regularization, leading to worse performance.
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2D keypoints y
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Figure 4: Architecture of our transformer-based DDPM for 3D human pose estimation.

To solve this problem, we propose a transformer-based architecture where each joint rotation xi ∈ R3

and each 2D keypoint yj ∈ R2 is considered a separate token. As shown in Fig. 5, the learnable
joint embeddings are added to the sequence of joint tokens and are encoded by the transformer
encoder. Similarly, the keypoint tokens are also encoded by a separate transformer encoder. Then a
transformer decoder with several decoder layers decodes the joint tokens with cross-attention from
time embedding and keypoint embedding. As opposed to the top-down architecture of an MLP where
the model has all the information available from the first layer (in form of concatenated vector), the
transformer has a bottom-up architecture where the ‘local’ tokens are processed to get a global view
of the pose and keypoint configuration. This enables parameter efficient learning as we will show that
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a transformer model with 11M parameters significantly outperforms a well-tuned MLP architecture
with 27M parameters.

5.3 Results

Model w = 0.0 w = 0.5 w = 2.0

MLP 0.382 0.223 0.241
Transformer 0.080 0.068 0.058

Table 1: Pixel alignment error for MLP and transformer DDPM with different alignment weights.

We show our quantitative results in Table 1. We compute the pixel alignment metric (as elaborated
in 5.1) for MLP based DDPM (27M parameters) and our novel transformer based DDPM (11M
parameters). DDPM models are trained once and evaluated by carrying out inference on the validation
set with three different values of the weight parameter w. We can see that the transformer model
achieves significantly lower alignment error than the MLP model. We also noticed that transformer
based model was robust to different sets of hyper parameters whereas MLP model required some
careful tuning. Transformer model was also very fast to converge during training. As we increase the
value of w, we can see that both models show increasing alignment (and hence decreasing alignment
error). This confirms our hypothesis that the DDPM based learned optimizer indeed allows us to
control the degree of alignment.

We show quantitative results of our best transformer-based model at the end. To limit the pdf size,
we are including only few results in this pdf. Please check more results are our code repository.
We can see that the DDPM based learned optimizer can indeed generate plausible body poses x
corresponding to the input 2D keypoints y. As we increase the weight parameter w, the extent of
alignment increases. In many cases, even though the generated pose is different from the groundtruth,
the generated pose is also plausible and aligns with the input 2D keypoints. In almost all cases, the
model avoids generating weird poses (with extreme rotations of joints). This confirms our hypothesis
that the model has learned the prior over the plausible set of poses and can generate many poses
aligning with the input while avoiding implausible poses.

6 Conclusion & Future Work

In this project, we explore DDPMs based learned optimizers for complex inverse problems. Going
beyond prior works[12], we analyze the performance of DDPM on a more challenging task of
3D pose estimation. We qualitatively and quantitatively prove the effects of the weight parameter
of classifier-free guidance, and show that DDPM provides a unique way to control the degree of
alignment while solving inverse problems. In addition, we also propose a novel transformer-based
architecture for 3D pose estimation that generates significantly better samples with half the number
of model parameters.

In future, we plan to explore the use of DDPM on other inverse problems. For 3D pose estimation,
we can increase the difficulty of the problem by also estimating the camera parameters c along with
body pose x. This will require re-designing the transformer based architecture to incorporate camera
parameters c. Going beyond keypoints, we plan to directly use image of a person as conditioning
instead of 2D keypoints. However, this will require significant research efforts to source appropriate
dataset and design DDPM architecture.
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